100 research outputs found

    The Effect of Ferrocene Derivatives on the Thermal Degradation of Polyethylene

    Get PDF
    The inhibiting action of ferrocene and p-ferrocenyl-aniline on the kinetics of thermal degradation of polyethylene was investigated by gravimetry, by measuring the changes in average molecular weight, by gas chromatography and spectroscopic techniques. The effect of ferrocene .derivatives is explained by assuming chemical reactions of the decomposition products (such as cyclopentadiene and cyclopentadienyl radicals) with macroradicals to occur

    Termination Reaction in the Anionic Polymerization of Methacrylonitrile

    Get PDF
    The anionic polymerization of methacrylonitrile initiated by triethylphosphine in dimethylformamide was studied. Experimental evidence for two mechanisms of termination reaction was obtained. By addition of water or alcohol in polymerizing system the rate of polymerization and molecular weight of polymethacrylon1itrile decrease, which proves the termination reaction to be bimolecular and proceed by interaction of the active carbanion with water or alcohol. The rate constant for termination of free anions with water was determined, k~,0 = 2.2 x 102 dm3 moP s-1• The termination reaction could not be excluded by purification and prolonged drying of all components of the system, which indicates that the second mechanism of termination is operative as well. Conductivity measurements gave evidence for a monomolecular spontaneous reaction leading to deactivation of the anion

    About low field memory and negative magnetization in semiconductors and polymers

    Full text link
    Ginzburg-Landau bulk magnetization of itinerant electrons can provide a negative effective field in the Weiss model by coupling to localized magnetic moments. The coupling enforces remnant magnetization, which can be negative or positive depending on the sample magnetic history. Stable magnetic susceptibility of coupled nonequilibrium subsystems with magnetization reversal is always positive. Gauss-scale fields could be expected for switching between negative and positive remnant moments in semiconductors with coupling at ambient temperatures. Negative magnetization in ultra-high conducting polymers is also discussed within the developed framework.Comment: 8 pages, no figure

    Polaron and bipolaron dispersion curves in one dimension for intermediate coupling

    Full text link
    Bipolaron energies are calculated as a function of wave vector by a variational method of Gurari appropriate for weak or intermediate coupling strengths, for a model with electron-phonon interactions independent of phonon wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare electrons have a constant effective mass. A two-parameter trial function is taken for the relative motion of the two electrons in the bipolaron. Energies of bipolarons are compared with those of two single polarons as a function of wave vector for various parameter values. Results for effective masses at the zone center are also obtained. Comparison is made with data of other authors for bipolarons in the Hubbard-Holstein model, which differs mainly from the present model in that it has a tight-binding band structure for the bare electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe

    Effects of polymer polydispersity on the phase behaviour of colloid-polymer mixtures

    Full text link
    We study the equilibrium behaviour of a mixture of monodisperse hard sphere colloids and polydisperse non-adsorbing polymers at their θ\theta-point, using the Asakura-Oosawa model treated within the free-volume approximation. Our focus is the experimentally relevant scenario where the distribution of polymer chain lengths across the system is fixed. Phase diagrams are calculated using the moment free energy method, and we show that the mean polymer size ξc\xi_{\rm c} at which gas-liquid phase separation first occurs decreases with increasing polymer polydispersity δ\delta. Correspondingly, at fixed mean polymer size, polydispersity favours gas-liquid coexistence but delays the onset of fluid-solid separation. On the other hand, we find that systems with different δ\delta but the same {\em mass-averaged} polymer chain length have nearly polydispersity-independent phase diagrams. We conclude with a comparison to previous calculations for a semi-grandcanonical scenario, where the polymer chemical potentials are imposed, which predicted that fluid-solid coexistence was over gas-liquid in some areas of the phase diagram. Our results show that this somewhat counter-intuitive result arose because the actual polymer size distribution in the system is shifted to smaller sizes relative to the polymer reservoir distribution.Comment: Changes in v2: sketch in Figure 1 corrected, other figures improved; added references to experimental work and discussion of mapping from polymer chain length to effective radiu

    Structure of Colloid-Polymer Suspensions

    Full text link
    We discuss structural correlations in mixtures of free polymer and colloidal particles based on a microscopic, 2-component liquid state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-) particles conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymer density screening length in dilute or semidilute concentrations, respectively. Their consequences on phase stability and structural correlations are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl
    corecore